어제 풀었던 문제와 이어지는 문제다.모든 Cauchy sequence가 수렴함을 보이는 문제였다.가장 많이 사용하는 key는 $\frac{x}{1+x}$가 증가함수라는 것이었다. $E[\frac{|X-Y|}{1+|X-Y|}]$가 본 문제의 식이었기 때문에 $\phi = \frac{x}{1+x}$로 놓고 문제를 접근했다. 이 문제의 핵심은 $X_{\infty}$를 구성하는 것이다. 어떻게?각 $\omega$마다 $X_n(\omega)$는 real sequence이다. 그러면 $X_{\infty} = \lim X_n(\omega)$로 잡아주면 좋겠다. 그러면 각 $\omega$마다 수렴함을 보여야 하는데. 나의 실수$d(X_m,X_n)$에 $\omega$를 넣고 그 값이 0으로 수렴한다고 생각했다. 그런데 ..